A new method for direct preparation of tin dioxide nanocomposite materials
نویسندگان
چکیده
In the current work, a novel combustion method is demonstrated for the direct synthesis of nanocomposite materials. Specifically doped tin dioxide (SnO2) powders were selected for the demonstration studies due to the key role SnO2 plays in semiconductor gas sensors and the strong sensitivity of doped SnO2 to nanocomposite properties. The synthesis approach combines solid and gas-phase precursors to stage the decomposition and particle nucleation processes. A range of synthesis conditions and four material systems were examined in the study: gold–tin dioxide, palladium–tin dioxide, copper–tin dioxide, and aluminum–tin dioxide. Several additive precursors were considered including four metal acetates and two pure metals. The nanocomposite materials produced were examined for morphology, phase, composition, and lattice spacing using transmission and scanning electron microscopy, x-ray diffractometry, and energy-dispersive spectroscopy. The results using the combustion synthesis approach indicate good control of the nanocomposite properties, such as the average SnO2 crystallite size, which ranged from 5.8 to 17 nm.
منابع مشابه
Synthesis and Characterization of SnO2 Nanostructures Prepared by a Facile Precipitation Method
In this paper, tin dioxide nanoparticles were synthesized by a fast and simple co-precipitation method. For SnO2 preparation, we used ammonia as precipitation agent and bis (acetylacetone) ethylene diamineas as capping agent. By changing in SnCl4, acacen mole-ratio different morphologies were obtained. This semiconductor nanostructure has photo-catalyst activities and can ...
متن کاملCombustion of multiphase reactants for the synthesis of nanocomposite materials
Controlling nanocomposite composition and morphology is a vital step toward designing new and advanced materials. The current work presents the results of an experimental investigation of the use of mixed-phase reactants for the synthesis of nanocomposite materials. Gas-phase tetramethyltin was used as a precursor for tin dioxide (SnO2). Metal additives were introduced to the SnO2 synthesis sys...
متن کاملPREPARATION AND CHARACTERIZATION OF TiO2 Fe2O3 NANOCOMPOSITE BY SOL GEL METHOD
Nanocomposites have improved aspect ratio and better mechanical properties when compared to the composites which had structures less than 100nm They are 1000 times tougher compared to conventional composites. Besides mechanical properties, nanocomposites also have improved electrical conductivity, thermal stability, chemically resistant, flame retardant and low permeability. TiO2 finds its best...
متن کاملAcetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film
This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag-SnO₂/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag-SnO₂/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene...
متن کاملGraphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries†
This study reports a novel strategy of preparing graphene composites by employing graphene oxide as precursor and oxidizer. It is demonstrated that graphene oxide can oxidize stannous ions to form SnS2 and is simultaneously reduced to graphene, directly resulting in the formation of SnSx–graphene (1 < x < 2) nanocomposites. The particle size of SnSx in the nanocomposites is tailored to be about...
متن کامل